C SCI 316 (Kong): Lisp Assignment 5

Solutions to these problems are to be submitted no later than Sunday, 10/28.*
See page 5 for instructions on how to submit.

SECTION 1 (Nonrecursive Preliminary Problems)

The three problems in this section (A – C) do not carry direct credit, but are intended to help you solve problems 1 – 3 in Part I of Section 2. Note that there may be questions on exam 1 or on the final exam that are of a similar nature to A – C.

Your solutions to problems A – C must not be recursive. You can test your solutions to these three problems on venus or euclid: Functions INDEX, MIN-FIRST, and SSORT with the stated properties are predefined for you when you start Lisp using cl on those machines.

A. INDEX is a function that is already defined on euclid and venus. If N is any positive integer and L is any list, then (INDEX N L) returns the Nth element of L if N does not exceed the length of L; if N exceeds the length of the list L, then (INDEX N L) returns the symbol ERROR. For example, (INDEX 3 '(A S (A S) (A) D)) => (A S) (INDEX 6 '(A S (A S) (A) D)) => ERROR
Complete the following definition of a function MY-INDEX without making further calls of INDEX and without calling MY-INDEX recursively, in such a way that if N is any integer greater than 1 and L is any nonempty list then (MY-INDEX N L) is equal to (INDEX N L).

(defun my-index (N L)
(let ((X (index (- N 1) (cdr L))))
 __))
[Note: You should not have to call any functions.]

B. MIN-FIRST is a function that is already defined on euclid and venus; if L is any nonempty list of real numbers then (MIN-FIRST L) is a list whose CAR is the minimum of the numbers in L and whose CDR is the list obtained when the first occurrence of that value is removed from L. (Thus (MIN-FIRST L) is "L with the first occurrence of its minimum value moved to the front"). For example, (MIN-FIRST '(0 3 1 0 3 5)) => (0 3 1 0 3 5) (MIN-FIRST '(4 3 1 1 0 3 5 0 3 0 2)) => (0 4 3 1 1 3 5 0 3 0 2).
Complete the following definition of a function MY-MIN-FIRST without making further calls of MIN-FIRST and without calling MY-MIN-FIRST recursively, in such a way that if L is any list of at least two real numbers then (MY-MIN-FIRST L) is equal to (MIN-FIRST L).

(defun my-min-first (L)
(let ((X (min-first (cdr L))))
 __))
[There are two cases: (car L) may or may not be ≤ (car X).]

*If you have difficulty with these problems, you are encouraged to come to see me in my office, either during my office hours or (if you cannot come at that time) by appointment. Questions about these problems that are e-mailed to me will not be answered before the submission deadline.
C. SSORT is a function that is already defined on euclid and venus; if \(L \) is any list of real numbers then (SSORT \(L \)) is a list of those numbers in ascending order. Complete the following definition of a function MY-SSORT without making further calls of SSORT and without calling MY-SSORT recursively, in such a way that if \(L \) is any nonempty list of real numbers then (MY-SSORT \(L \)) is equal to (SSORT \(L \)).

```lisp
(defun my-ssort (L)
  (let* ((L1 (min-first L))
         (X  (ssort (cdr L1))))
       ____________________________________________ ))
```

SECTION 2 (Main Problems)

Your solutions to the following 16 problems will count a total of 2\% towards your grade if the grade is computed using rule A—the 10 problems in Part I will count 1\%, and the 6 problems in Part II will also count 1\%. It is expected that your solutions to problems 1 – 3 will be based on your solutions to A – C above. [On euclid and venus, when you load in your function definitions for problems 1 – 3, you will replace the predefined functions with the same names with your versions of those functions.]

Program in a functional style, without using SETF / SETQ or iterative constructs such as DO. Indent code appropriately (see Touretzky or Winston & Horn for examples of good indentation). Use LET / LET* or appropriate helping functions to avoid evaluating computationally expensive expressions more than once. Any helping functions you define for use in your solutions must be defined in the .lsp file that you submit for grading.

When writing a function, decide what the valid values for each argument will be. The statement of each problem specifies that certain argument values must be valid. For example, in problem 5 any list of real numbers in ascending order (including the empty list) must be a valid value for each of the arguments; other argument values need not be valid.

If \(f \) computes \((f \, y \, ...) \) from \((f \, (\text{smaller} \, y) \, ...) \) for certain values of \(y \), then you should check that this never happens for any value of \(y \) which is valid (in the sense of the previous paragraph) for that argument but which satisfies one of the following conditions:

BC-1: \((\text{smaller} \, y) \) is undefined.
BC-2: \((\text{smaller} \, y) \) is defined but is not a valid value for that argument of \(f \).
BC-3: \((\text{smaller} \, y) \) is a valid value for that argument of \(f \) but is no smaller in size than \(y \) [e.g., the case \(y = \text{NIL} \) when \((\text{smaller} \, y) \) is \((\text{cdr} \, y) \)].

PART I [Solutions to problems 1 – 10 will count 1\% towards your grade if the grade is computed using rule A.]

1. Define a recursive function INDEX with the properties stated in problem A. Note that the first argument of INDEX may be 1, and that the second argument may be NIL.

2. Define a recursive function MIN-FIRST with the properties stated in problem B. Note that the argument of MIN-FIRST may be a list of length 1.

3. Define a recursive function SSORT with the properties stated in problem C. In the definition of SSORT you may call SSORT itself, MIN-FIRST, CONS, CAR, CDR and ENDP, but you should not call any other function.
4. Use the function PARTITION from Lisp Assignment 4 to complete the following definition of a recursive function QSORT such that if L is a list of real numbers then (QSORT L) is a list of those numbers in ascending order.

```
(DEFUN QSORT (L)
  (IF (ENDP L)
      NIL
      (LET ((PL (PARTITION (CDR L) (CAR L))))
        ... )))
```

5. Define a Lisp function MERGE-LISTS such that if each of L1 and L2 is a list of real numbers in ascending order then (MERGE-LISTS L1 L2) returns the list of numbers in ascending order that is obtained by merging L1 and L2. Your definition must not call any sorting function.

Examples:
- `(MERGE-LISTS '2 4 5 7 8 9) (3 4 6 9 9) => 2 3 4 4 5 5 6 7 8 9 9 9`
- `(MERGE-LISTS '1 2 3) (4 5 6 7) => 1 2 3 4 5 6 7`
- `(MERGE-LISTS '3 4 5 6 7) '0 1 2 3) => 0 1 2 3 3 4 5 6 7`

Hint: Consider the 4 cases L1 = (), L2 = (), (< (car L1) (car L2)), and (>= (car L1) (car L2)).

6. Use the function SPLIT-LIST from Lisp Assignment 4 and MERGE-LISTS to define a recursive Lisp function MSORT such that if L is a list of real numbers then (MSORT L) is a list consisting of the elements of L in ascending order. In the definition of MSORT you may call SPLIT-LIST, MSORT itself, MERGE-LISTS, CAR, CDR, CADR and ENDP, but you should not call any other function. Be sure to use LET or LET*, so that MSORT only calls SPLIT-LIST once.

Hint: Does a list of length 1 satisfy condition BC-3 (see page 2) for one of your function's recursive calls?

In problems 7 – 10, assume the argument is a list.

7. Do exercise 10.4(a) on page 418 of Sethi, but use Common Lisp instead of Scheme. Name your function REMOVE-ADJ-DUPL.

Hint for problems 8 and 9 One way to do these two problems is to give definitions of the following form:

```
(defun function-name (L)
  (cond ((endp L) ... ) ; L is ( )
        ((or (endp (cdr L)) (not (equal (car L) (cadr L))))) ... ) ; L is (x) or (x y ... )
        ((or (endp (cddr L)) (not (equal (car L) (caddr L))))) ... ) ; L is (x x) or (x x y ... )
        (t ... )))) ; L is (x x x ... )
```

8. Do exercise 10.4(b) on the same page in Common Lisp. Name your function UNREPEATED-ELTS.

9. Do exercise 10.4(c) on the same page in Common Lisp. Name your function REPEATED-ELTS.

10. Do exercise 10.4(d) on the same page in Common Lisp. Name your function COUNT-REPETITIONS.

PART II [Solutions to problems 11 – 16 will count 1% towards your grade if the grade is computed using rule A.]

11. [Exercise 8 on p. 141 of Wilensky] Write a recursive function SUBSET that takes two arguments: a function and a list. SUBSET should apply the function to each element of the list, and return a list of all the elements of the argument list for which the function application returns a true (i.e., non-NIL) value. **Example:** (subset #'numberp '(a b 2 c d 3 e f)) => (2 3)

Lisp Assignment 5: Page 3 of 5
12. [Exercise 7 on p. 141 of Wilensky] Write (i) a recursive function OUR-SOME and (ii) a recursive function OUR-EVERY each of which takes two arguments: a function and a list. OUR-SOME should apply the function to successive elements of the list until the function returns a true (i.e., non-NIL) value, at which point it should return the rest of the list (including the element for which the function just returned a true value).* If the function returns NIL when applied to each of the arguments, OUR-SOME should return NIL. OUR-EVERY should apply the function to successive elements of the list until the function returns NIL, at which point it should return NIL. If the function returns a true value when applied to each of the arguments, then OUR-EVERY should return T. Examples:

(our-some #'numberp '(A B 2 C D)) => (2 C D) (our-some #'numberp '(A B C D)) => NIL
(our-every #'symbolp '(A B 2 C D)) => NIL (our-every #'symbolp '(A B C D)) => T

*Note that the built-in Lisp function SOME behaves differently from OUR-SOME in this case: SOME returns the non-NIL value that was just returned by the function.

13. Modify your solutions to problem 7 of Lisp Assignment 4 and problem 4 above to produce a solution to exercise 10.6b on p. 419 of Sethi. Your sorting function should take as arguments a 2-argument predicate p and a list L, and may assume the predicate p and list L are such that:
1. For all elements x and y of L, (p x y) is either true or false.
2. Whenever x and y are unequal elements of L, if (p x y) is true then (p y x) is false.
3. For all elements x, y, and z of L, if (p x y) is true and (p y z) is true then (p x z) is also true.
The sorted list returned by your function should contain exactly the same elements as L, and must satisfy the following condition: Writing s_i to denote the i^{th} element of the sorted list, whenever the elements s_j and s_k are unequal and $j < k$ (i.e., s_k appears after s_j in the sorted list) we have that (p s_i s_j) is false. (You can easily verify that the sorted lists in the three examples below satisfy this condition.) Your sorting function and the partition function it uses should be named QSORT1 and PARTITION1. Examples:

(QSORT1 #'> '(2 8 5 1 5 7 3)) => (8 7 5 3 2 1)
(QSORT1 #'< '(2 8 5 1 5 7 3)) => (1 2 3 5 5 7 8)
(QSORT1 (LAMBDA (L1 L2) (< (LENGTH L1) (LENGTH L2)))
 '((X) (A D X E G) (1 2 Q R) NIL (S D F)) => (NIL (X) (S D F) (1 2 Q R) (A D X E G))

14. Do exercise 10.12a on p. 420 of Sethi in Common Lisp. Example:

(FOO #’-’ (1 2 3 4 5)) => ((–1 2 3 4 5) (1 –2 3 4 5) (1 2 –3 4 5) (1 2 3 –4 5) (1 2 3 4 –5))

15. First, re-read the subsection "Recursion Can Be Efficient" on pp. 75 –78 of Winston and Horn or re-read the subsection "8.16 Advantages of Tail Recursion" on pp. 279 –81 of Touretzky. Then solve the following problems.

(a) Do exercise 10.5 on p. 419 of Sethi in Common Lisp. Name your functions TR-ADD, TR-MUL and TR-FAC. Examples:

(TR-ADD '(1 2 3 4 5) 0) => 15 (TR-MUL '(1 2 3 4 5) 1) => 120 (TR-FAC 5 1) => 120

Note that your definitions of TR-ADD, TR-MUL, and TR-FAC must be tail recursive.

(b) Wilson's Theorem in number theory states that an integer $n > 1$ is prime if and only if ($n – 1)!$ mod $n = n – 1$. Use this theorem and TR-FAC to write a predicate SLOW-PRIMEP such that if $n > 1$ is an integer then (SLOW-PRIMEP n) returns T or NIL according to whether or not n is prime. (You may of course use the built-in function MOD.) Test your predicate SLOW-PRIMEP by using it to find the least prime number greater than 20,000. Important: To prevent stack overflow, enter (compile 'tr-fac) at clisp's > prompt before calling SLOW-PRIMEP with large arguments.
16. [Based on exercise 8 on p. 111 of Wilensky] A matrix can be represented as a nonempty list of nonempty lists in which the \(i\)th element of the \(j\)th list is the element in the \(i\)th column and \(j\)th row of the matrix. For example, \(((A\ B)\ (C\ D))\) would represent a \(2 \times 2\) matrix whose first row contains the elements \(A\) and \(B\), and whose second row contains the elements \(C\) and \(D\). Write three functions TRANSPOSE1, TRANSPOSE2, and TRANSPOSE3, each of which takes a single argument \(M\); if \(M\) is a nonempty list of nonempty lists which represents a matrix in the above-mentioned way, then each of the three functions should return the list of lists which represents the transpose of that matrix. The three functions should work as follows:

(a) \((\text{transpose1} \ M)\) computes its result from \((\text{transpose1} \ (\text{cdr} \ M))\) and \((\text{car} \ M)\) using \text{mapcar } \#'\text{cons}. \[\text{Hint: Take the set of valid values of } M \text{ to be the set of lists of one or more nonempty lists that all have the same length. Then the BC-2 base case is } \text{endp} \ (\text{cdr} \ M), \ \text{when the result to be returned is } \ (\text{mapcar } \#'\text{list} \ (\text{car} \ M))].\]

(b) \((\text{transpose2} \ M)\) computes its result from \((\text{transpose2} \ (\text{mapcar } \#'\text{cdr} \ M))\) and \((\text{mapcar } \#'\text{car} \ M)\). \[\text{Hint: Again, take the set of valid values of } M \text{ to be the set of lists of one or more nonempty lists that all have the same length. This time, the BC-2 base case is } \text{endp} \ (\text{cdar} \ M), \ \text{when the result is } \ (\text{list} \ (\text{mapcar } \#'\text{car} \ M)).\]

(c) \((\text{transpose3} \ M)\) obtains its result as follows: \((\text{apply } \#'\text{mapcar} \ (\text{cons } \#'\text{ ???} \ M))\) or, equivalently, \((\text{apply } \#'\text{mapcar } \#'\text{ ???} \ M)\), where ??? is the name of an appropriate function.

Example (here \(n\) may be 1, 2 or 3):

\[
(\text{TRANSPOSE} \ n \ '((1 2 3 4) (5 6 7 8) (9 10 11 12))) => ((1 5 9) (2 6 10) (3 7 11)(4 8 12))
\]

How to Submit Your Solutions for Grading

You may work with up to two other students on these problems, but each student must write up his or her solutions individually—no two students should submit identical files. Put the function definitions you wrote for problems 1 – 16 in a single file named

\[
\text{your last name in lowercase-5.lsp}
\]

in your home directory on euclid. This file must include definitions of any helping functions that are used. If you are working with others, include the name(s) of your partners in comment(s) at the beginning of the file. Functions that are incorrectly named may receive no credit (e.g., if your solution to problem 5 is named MERGE-LIST instead of MERGE-LISTS, you may get no credit for that problem). Test your functions on euclid! Note that if clisp cannot even LOAD your file without error (i.e., if LOAD gives a Break ... > prompt) then you can expect to receive no credit at all for your submission, even if the only error is one missing or extra parenthesis!

Within the file, your solution to each problem should be preceded by a comment of the following form, where \(N\) is the problem number: ; Solution to Problem N

Your solutions should appear in the same order as the problems. If you cannot solve a problem, put a comment of the form ; No Solution to Problem N Submitted where a solution to that problem would have appeared.

Leave your final version of \(\text{your last name in lowercase-5.lsp}\) in your home directory on euclid no later than midnight on the due date.

Do NOT open the submitted file in an editor on euclid after the due date, unless you are resubmitting a corrected version of your solutions as a late submission. Also do not execute \(\text{mv}, \ \text{chmod}, \ or \ \text{touch} \) with your submitted file as an argument after the due date. However, it is OK to view a submitted file using the \text{less} file viewer after the due date. \[\text{Note: If euclid unexpectedly goes down after 6 p.m. on the due date, the deadline will not be extended. Try to submit no later than noon that day, and much sooner if possible.}\]